Effective packing dimension of Π1-classes

نویسنده

  • Chris J. Conidis
چکیده

We construct a Π1-class X that has classical packing dimension 0 and effective packing dimension 1. This implies that, unlike in the case of effective Hausdorff dimension, there is no natural correspondence principle (as defined by Lutz) for effective packing dimension. We also examine the relationship between upper box dimension and packing dimension for Π1-classes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective Packing Dimension of Π 01 - Classes Chris

We construct a Π1-class X that has classical packing dimension 0 and effective packing dimension 1. This implies that, unlike in the case of effective Hausdorff dimension, there is no natural correspondence principle (as defined by Lutz) for effective packing dimension. We also examine the relationship between upper box dimension and packing dimension for Π1-classes.

متن کامل

Logic Blog

1. Jan 2010: a downward GL1 set that is not weakly jump traceable 2 1.1. Original result 2 1.2. New results 2 1.3. Comments 2 2. March 2010: Structures that are computable almost surely 2 2.1. A structure that is computable almost surely, is computable in every Π1 random 2 2.2. Related questions 3 3. May 2010 : Cooper’s jump inversion and weak jump traceability 3 4. May 2010: The collection of ...

متن کامل

Two Open Problems on Effective Dimension

Effective fractal dimension was defined by Lutz [13] in order to quantitatively analyze the structure of complexity classes. The dimension of a class X inside a base class C is a real number in [0,1] corresponding to the relative size of X ∩ C inside C. Basic properties include monotonicity, so dimension 1 classes are maximal and dimension 0 ones are minimal, and the fact that dimension is defi...

متن کامل

Effectively closed sets of measures and randomness

We show that if a real x ∈ 2 is strongly Hausdorff Hh-random, where h is a dimension function corresponding to a convex order, then it is also random for a continuous probability measure μ such that the μ-measure of the basic open cylinders shrinks according to h. The proof uses a new method to construct measures, based on effective (partial) continuous transformations and a basis theorem for Π...

متن کامل

A real of strictly positive effective packing dimension that does not compute a real of effective packing dimension one

Recently, the Dimension Problem for effective Hausdorff dimension was solved by J. Miller in [Mil], where the author constructs a Turing degree of non-integral Hausdorff dimension. In this article we settle the Dimension Problem for effective packing dimension by constructing a real of strictly positive effective packing dimension that does not compute a real of effective packing dimension one ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007